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ABSTRACT 
Many sports players spend more of their time practicing than 
actual playing the game. With this motivation, we wanted a device 
to help assist players during their practice sessions. We present 
Sensei, a device that has a built in scorekeeper and a motion 
analyzer. Three participants wore the device, and we analyzed 
their motions. After analysis we used our algorithm to determine 
how similar the motion is. This similarity, we call our consistency 
score. The consistency score is a value between 0-100. The higher 
the value, the more consistent the motions are. To evaluate our 
method, we exercised many different cases. Our team tested the 
common case and the edge cases. For our purpose, the common 
case is a natural swing. For our system, we identified three edge 
cases. The edge cases were: static motions, very slow motions, 
and fast motions. We exercised these cases and our result was true 
to what we expected. Similar motions received high consistency 
score whereas dissimilar motions resulted in low consistency 
score. In addition to our consistency score, we implemented an 
interface for the user to view their motion in a graphical form. The 
graph plots motion, where x-axis is time, and y-axis is the 
magnitude of acceleration. Below this graph we display the 
maximum acceleration for each motion. As our final feature, our 
team implemented a scorekeeper that supports tennis, basketball, 
and golf. Our goal was to provide people with a wearable device 
that is capable of improving their sport’s experience. Sensei will 
improve a player’s consistency and also keep score for them.  
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INTRODUCTION 
Playing sports is healthy and should be part of people’s lifestyle. 
We believe that people should be active and enjoy playing sports.  
However some people might not enjoy playing a sport because 
they are not good at it.  Our goal is to provide an experience that 
will help people become better at a sport.  The old-fashioned 
method of doing so is to hire a personal coach. Hiring a personal 
coach is not only is a hassle for people, but is also very expensive. 

In order to solve this problem, we came up with Sensei. Sensei is 
a wearable device that can act as your personal coach.  Not only 
will it help improve your game, it can also be your own personal 
scorekeeper.  

Consistency feature 
Our wearable devices will help you in sports. Sensei is a device 
that will quantify your motion during a sports session. Whether it 
is basketball, tennis, golf, or badminton, Sensei can help make 
your sports life easier. Sensei is designed to measure your 
consistency, record the good shots and bad shots. It will deliver 
then a statistics to show the user how they are performing for a 
particular stroke.  

Acceleration of motion 
Sensei also has the ability to show the user the graph of their 
motions. This graph is represented where the x-axis is time and y-
axis is magnitude of acceleration. We find that many people want 
to quantify how powerful their stroke is. With Sensei that is 
possible. 

Scorekeeper 
Lastly, Sensei is a wearable scorekeeper. How often does it 
happen that you forget the score of the game? For many players, 
this is very common.  To put an end to a problem, we 
implemented a feature that acts as your scorekeeper. With Sensei, 
you will never forget the score of a game.  

BACKGROUND 
The core of Sensei is essentially made up of three components: 
the IMU (inertial measurement unit), RFduino, and Android 
application.  

Inertial measurement unit 
The IMU (inertial measurement unit) is commonly used to 
measure the kinematics of a device. A 6-axis IMU uses a 3-axis 
accelerometer and a 3-axis gyroscope. The 3-axis accelerometer is 
a sensor that outputs the acceleration in the x, y, and z direction. 
Similarly the 3-axis gyroscope is a sensor that outputs the angular 
speed in the x, y, and z direction.  
 

  
Figure 1: MPU-6050, 6-axis inertial measurement unit (left) 
and diagram of MPU-6050 with axis labeled (right)  
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RFduino 
An RFduino is a finger-tip sized, Arduino compatible, wireless 
enabled microcontroller. It sports a ARM Cortex-M0 processor 
and has a built in Bluetooth 4.0 Low Energy module. With the usb 
shield, this device is reprogrammable using its Arduino IDE. 
Code for the RFduino is written in the C language. The 
microcontroller’s typical power supply is 3V. The RFduino device 
has 128kb of flash memory and 8kb of ram onboard. 

  
Figure 2: RFduino (left) and usb programmable shield (right) 

 
Android 
Android is a mobile operating system developed by Google. 
Android is used to provide interaction Sensei. In addition with the 
mobile phone, it is used for its processing power. The android 
phone processes the raw values from the IMU and performs 
various algorithms to compute the results. 

IMPLEMENTATION METHOD 
Sensei has three main components: the RFduino, IMU, and 
Android application. The RFduino communicates with the IMU 
via I2C. The RFduino communicates with the Android phone via 
Bluetooth. Therefore the system is connected from the IMU to the 
Android phone. 

Hardware 
Configuring the IMU 
To measure the acceleration and rotation of the device we use the 
IMU. The IMU uses 16-bit ADC per axis of measurement. In its 
default configuration, the accelerometer has a scale of ±2g. For 
our intent, we need the range to be higher. Since the bit 
representation of the value is constant, increasing the 
accelerometer range will decrease the precision of our 
accelerometer.  The largest range that the IMU supports is ±16g. 
In order to adjust the sensitivity to ±16g, we set the AFS_SEL bits 
to be the value 3. We locate which register AFS_SEL is using the 
register map datasheet as shown in figure 3. Since AFS_SEL[1:0] 
are located in register 1C and are bits 3 and 4, we set the value of 
register 1C to be, 00011000 or 0x18. According to the datasheet, 
values from accelerometer are stored as a 16 bit 2’s complement 
value. Its full scale is ±16g with a LSB sensitivity of 2048/g. This 
means that a digital output of 2048 is equivalent to a unit of g. For 
a 16 bit 2’s complement, the range is -215 to 215-1 or -32,768 to 
32767. A value from the sensor can be converted to units of g 
using the unit conversion of 2048/g. So for example, if the sensor 
reads: accel_x = 6032, accel_y = 8382, and accel_z = 2020, we 
can divide values by the LSB sensitivity constant 2048 to get the 
acceleration in each axis in units of g: accel_x = 6032/2048 ≈ 
2.95g, accel_y = 8382/2048 ≈ 4.09g, and accel_z = 2020/2048 ≈ 
0.99 g. There are 2 bytes of accelerometer values per axis. 
Therefore, accelerometer data in 3 axis will be 6 bytes. 

 

 
Figure 3: Register mapping of the accelerometer (top) and 
accelerometer configuration register (below)  

Sending data from RFduino 
The IMU is paired with an RFduino. The main job of the RFduino 
is to read the raw values from the sensor, and encode the IMU 
data and send it to the Android via Bluetooth. We obtained the 
raw data from the IMU to our RFduino via I2C. The next step is 
to encode the data into bytes and sent these bytes to our Android 
application via Bluetooth low energy.  

Prototyping the housing unit 
To enclose our device, we printed our housing unit. The housing 
unit has 4 button exposed on the top. The housing unit uses a 
“double T” design to access the button. The motive behind the 
double T design is used to lock the button in place so that it does 
not fall out. The circular pad, which is connected to the double T 
support material, can be pressed exteriorly. The flat-end part of 
the double T support is pressed against the device’s button. This 
allows users to press buttons from the exterior.  

 
Figure 4: Prototype case for the device 
 

 
Figure 5: Double T design for button (left) and exterior button 
for the housing unit (right) 
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Software 
Data flow 
The Android phone handles most of the processing. When the 
motion button is pressed on the RFduino, the Android phone 
processes the data until the button is pressed again. It decodes the 
data from the RFduino and stores it into a Motion object. Our 
algorithm is then applied to all the motion objects accumulated by 
the user and outputs the consistency score, a rating value between 
0 and 100. 
 

 
Figure 6: Data flowchart, from the user’s motion to the 
consistency score 
 

Detecting similarities in motion data 
Once the user has done a variety of motions, the user can view 
his/her consistency score by swiping to the consistency tab. It 
calculates the score by comparing the motion objects. This is the 
most challenging part. How should you compare sets of data 
motion? What approach is optimal? Without some measure of 
warping the data, it is very hard because the data has a component 
of time that we do not want to factor when making the 
comparisons. Two motions that are similar but starts at different 
times should output as a similar motion.  The solution to our 
problem was dynamic time warping.  Using dynamic time 
warping our output is the path cost from one motion to another 
motion. The lower the path cost, the more similar the motions are. 
This is the core of our consistency score rating.  

Dynamic time warping 
DTW is a time series alignment algorithm. It aligns two sequences 
of vectors by warping the time axis iteratively until an optimal 
match between the sequences is found [4]. To understand how this 
algorithm works, you can visualize a 2D grid. Each cell in the grid 
represents the minimum path costs to reach that cell. The cost is 
related to the motion vectors that are being compared. Similar 
values result in lower costs. This algorithm works by keeping 
track of the costs of the best paths to each point in the grid.  Once 
the end point is reached, it calculates the minimum cost value by 
accumulating all the cost values at each point in the path. For our 
purpose, the value of the path cost is related to the consistency of 
motions. High path costs in two motions infers that the motions 
are not similar, whereas low path costs infers that the motions are 
similar. At some point we must draw a line to determine what is 
considered a “good” score and “bad” score. The quantitative 
representation of this line is a threshold value.  

Considering different motion speeds 
The cost path increases as the magnitudes of the signal increases. 
Our team considered two options of solving the issue; we must 
either normalize the data or consider an algorithm to adjust the 
threshold value. With some testing, we found the later to be more 
effective.  

Dealing with noise 
When dealing with data, noise must be considered. Even when the 
IMU is static, there are fluctuations in the data. This noise adds 
some error in our motion consistency algorithm.  We balance this 
noise with an initial threshold for our path cost. This initial 
threshold is minimal and is enough to cover the static noise we are 
getting from the IMU. 
 

           
Figure 7: Dynamic time warping algorithm grid 

 
Figure 8: Visual representation of DTW alignment 

 
RESULTS 
Verifying Sensei 
Testing the DTW algorithm 
To test DTW we verified that closer related vectors resulted in 
lower DTW path costs.  We first generated vectors to compare. 
We made a function to generate vectors that would be similar by a 
given percentage. We made a variety of vectors that were similar 
by different percentages. DTW was then applied to these vectors 
and we viewed the results. Our output cost paths should reflect 
based on the percentages of similarity of the vectors. For example 
a percentage of 90% similarity should be giving a lower cost path 
than one with 80% similarity. We verified that the smaller costs 
paths were associated to the vectors with higher similarity, and 
vice versa.  
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Testing the consistency algorithm 
To evaluate and verify our consistency algorithm, we tested the 
common case and the edge cases. One of our edge cases was the 
resting position. In this position two or more motions should 
achieve a very high consistency score. Other edges cases include 
very slow motions and very fast motions. Three participants 
performed different motions of varying speed and time. The data 
we collected was processed in our algorithm and we debugged 
and analyzed every stage of the algorithm to make sure each was 
functional.  Our motion was processed into a motion array, which 
was then dynamically time warped to calculate the costs paths. 
For each case we tested, we compared this cost path to our 
modified threshold values. We determined a relation between path 
cost and consistency percentage based on that. Since there are 
many different motions to consider, throughout testing, many 
adjustments of the algorithm had to be made.  

CHALLENGES 
Frequency of sending data 
After successfully reading the IMU data we verified to make sure 
it matches with our encoding. Next, we graphed the values 
coming from the sensor and realized a potential problem. Speed 
was an issue. The frequency at which we are sending data 
severely impacts our ability to determine whether a frame of data 
is consistent to another frame. At first without any delays we were 
getting a frequency of about 25 Hz. In other words we were 
sending raw data 25 times per second. This was not sufficient 
because if we are moving the device very fast, then the capturing 
of motion is not as smooth. We later optimized our RFduino 
code’s efficiency. With this change, we were able to send raw 
data at a rate of 80 Hz. This helped smooth our data graphs and 
improved our precision. 

Housing challenges 
Since none of us were mechanical experts, one of our biggest 
challenges was to have buttons that were accessible from the 3D 
housing. We looked at several designs and decided that a “double 
T” design would be effective for our housing unit. Although 
effective, installing the double T pillar design to support our 
device, outer housing, and button cap was difficult. Many manual 
adjustments were made to ensure that everything was lined up 
correctly. Lining up the button-holes from the housing unit to the 
buttons on the device was also challenging.  Not only was it hard 
to get precise measurements, but also the 3D printer’s error was a 
big problem. Since we most measurements were taken in units of 
millimeters, the error on the 3D printing could not be ignored. 
Many manual adjustments to our 3D model had to be made in the 
housing process. 

Consistency algorithm challenges 
One of our biggest challenges in determining the consistency 
algorithm was to figure out the proper way of comparing signals 
that vary in time.  Although they vary in time, our algorithm must 
be able to adjust to time. If you compare the data at the same time 
segments, two motions that are identical, but shifted in time will 
conclude that the motions are not similar. Applying DTW to our 
motion data solved this problem. 

IMPROVEMENTS 
User experience 
For a better user experience, replacing the push buttons with a 
touch sensor would be necessary. Another improvement is to get 

rid of the start and stop signal. We hope in the future our device 
just requires one tap to start a sport session. Throughout the 
session the user can make multiple motions and the device will 
detect what was considered a motion and compare them. This will 
reduce a lot of the setup work of the device.  We believe this can 
be possible with the use of the gyroscope and accelerator data. 
When the gyroscope and accelerator data exceeds a threshold that 
can be the signal that a motion is starting. When those values get 
below a threshold that is when a motion is stopped. We hope we 
could implement this feature in the future. Also adding a small 
display screen can make scorekeeper completely independent of 
our Android phone.  

Retrieving accurate and smooth data 
To perfect our design, our system would require continuous data. 
Since that is impossible, the best we could do is to maximize the 
sensor’s data throughput and smooth our data. Our current 
throughput is 80 Hz. One method of improving our results is to 
smooth the data. Although a rate of 80 Hz is sufficient for our 
product, we can improve this by smoothing out the signal. A 
perfect sensor would have no spikes in the data. The difference in 
two adjacent acceleration readings should be similar in 
magnitude. Since motion is continuous we would want our data to 
be more continuous. If we can make our IMU data have less 
spikes, it would improve our results. We can improve our design 
by applying a smoothing function to reduce spikes in our data.  

CONCLUSION 
Our team wanted a device that can replace the need for a sports 
coach. Sensei, as a wearable device, can be a portable replacement 
for a coach. It helps quantify and evaluate your sports session. 
Sensei’s main motivation is to deliver the user a metric in which 
they can evaluate their stroke. The device will give a visual 
representation of their motion. We believe that a sports player 
should strive for consistency. Sensei will give the user a score on 
how consistent their motion is. The IMU measures the motion at a 
rate of 80 Hz and the Android phone processes the data and 
performs algorithms to determine the score. The consistency score 
is determined by applying a dynamic time warping algorithm to 
the sensor data.  
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