
 - 1 -

Sensei: Sports Assistant
Daniel Jang, Debosmit Ray, Jin Choe, Matthew Reynolds

CSE 477, Spring 2015

ABSTRACT
Many sports players spend more of their time practicing than
actual playing the game. With this motivation, we wanted a device
to help assist players during their practice sessions. We present
Sensei, a device that has a built in scorekeeper and a motion
analyzer. Three participants wore the device, and we analyzed
their motions. After analysis we used our algorithm to determine
how similar the motion is. This similarity, we call our consistency
score. The consistency score is a value between 0-100. The higher
the value, the more consistent the motions are. To evaluate our
method, we exercised many different cases. Our team tested the
common case and the edge cases. For our purpose, the common
case is a natural swing. For our system, we identified three edge
cases. The edge cases were: static motions, very slow motions,
and fast motions. We exercised these cases and our result was true
to what we expected. Similar motions received high consistency
score whereas dissimilar motions resulted in low consistency
score. In addition to our consistency score, we implemented an
interface for the user to view their motion in a graphical form. The
graph plots motion, where x-axis is time, and y-axis is the
magnitude of acceleration. Below this graph we display the
maximum acceleration for each motion. As our final feature, our
team implemented a scorekeeper that supports tennis, basketball,
and golf. Our goal was to provide people with a wearable device
that is capable of improving their sport’s experience. Sensei will
improve a player’s consistency and also keep score for them.

Author Keywords
Sports; inertial measurement unit; wearable; dynamic time
warping,

ACM Classification Keywords
C.0; C.3; I.1.2; special-purpose and application-based systems,
microprocessor and microcomputer applications, signal
processing systems, real-time and embedded systems, computing
methologies, symobolic and algebraic manipulation

General Terms
Algorithms; Design; Human Factors; Performance

INTRODUCTION
Playing sports is healthy and should be part of people’s lifestyle.
We believe that people should be active and enjoy playing sports.
However some people might not enjoy playing a sport because
they are not good at it. Our goal is to provide an experience that
will help people become better at a sport. The old-fashioned
method of doing so is to hire a personal coach. Hiring a personal
coach is not only is a hassle for people, but is also very expensive.

In order to solve this problem, we came up with Sensei. Sensei is
a wearable device that can act as your personal coach. Not only
will it help improve your game, it can also be your own personal
scorekeeper.

Consistency feature
Our wearable devices will help you in sports. Sensei is a device
that will quantify your motion during a sports session. Whether it
is basketball, tennis, golf, or badminton, Sensei can help make
your sports life easier. Sensei is designed to measure your
consistency, record the good shots and bad shots. It will deliver
then a statistics to show the user how they are performing for a
particular stroke.

Acceleration of motion
Sensei also has the ability to show the user the graph of their
motions. This graph is represented where the x-axis is time and y-
axis is magnitude of acceleration. We find that many people want
to quantify how powerful their stroke is. With Sensei that is
possible.

Scorekeeper
Lastly, Sensei is a wearable scorekeeper. How often does it
happen that you forget the score of the game? For many players,
this is very common. To put an end to a problem, we
implemented a feature that acts as your scorekeeper. With Sensei,
you will never forget the score of a game.

BACKGROUND
The core of Sensei is essentially made up of three components:
the IMU (inertial measurement unit), RFduino, and Android
application.

Inertial measurement unit
The IMU (inertial measurement unit) is commonly used to
measure the kinematics of a device. A 6-axis IMU uses a 3-axis
accelerometer and a 3-axis gyroscope. The 3-axis accelerometer is
a sensor that outputs the acceleration in the x, y, and z direction.
Similarly the 3-axis gyroscope is a sensor that outputs the angular
speed in the x, y, and z direction.

Figure 1: MPU-6050, 6-axis inertial measurement unit (left)
and diagram of MPU-6050 with axis labeled (right)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’10, Month 1–2, 2010, City, State, Country.
Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00.

 - 2 -

RFduino
An RFduino is a finger-tip sized, Arduino compatible, wireless
enabled microcontroller. It sports a ARM Cortex-M0 processor
and has a built in Bluetooth 4.0 Low Energy module. With the usb
shield, this device is reprogrammable using its Arduino IDE.
Code for the RFduino is written in the C language. The
microcontroller’s typical power supply is 3V. The RFduino device
has 128kb of flash memory and 8kb of ram onboard.

Figure 2: RFduino (left) and usb programmable shield (right)

Android
Android is a mobile operating system developed by Google.
Android is used to provide interaction Sensei. In addition with the
mobile phone, it is used for its processing power. The android
phone processes the raw values from the IMU and performs
various algorithms to compute the results.

IMPLEMENTATION METHOD
Sensei has three main components: the RFduino, IMU, and
Android application. The RFduino communicates with the IMU
via I2C. The RFduino communicates with the Android phone via
Bluetooth. Therefore the system is connected from the IMU to the
Android phone.

Hardware
Configuring the IMU
To measure the acceleration and rotation of the device we use the
IMU. The IMU uses 16-bit ADC per axis of measurement. In its
default configuration, the accelerometer has a scale of ±2g. For
our intent, we need the range to be higher. Since the bit
representation of the value is constant, increasing the
accelerometer range will decrease the precision of our
accelerometer. The largest range that the IMU supports is ±16g.
In order to adjust the sensitivity to ±16g, we set the AFS_SEL bits
to be the value 3. We locate which register AFS_SEL is using the
register map datasheet as shown in figure 3. Since AFS_SEL[1:0]
are located in register 1C and are bits 3 and 4, we set the value of
register 1C to be, 00011000 or 0x18. According to the datasheet,
values from accelerometer are stored as a 16 bit 2’s complement
value. Its full scale is ±16g with a LSB sensitivity of 2048/g. This
means that a digital output of 2048 is equivalent to a unit of g. For
a 16 bit 2’s complement, the range is -215 to 215-1 or -32,768 to
32767. A value from the sensor can be converted to units of g
using the unit conversion of 2048/g. So for example, if the sensor
reads: accel_x = 6032, accel_y = 8382, and accel_z = 2020, we
can divide values by the LSB sensitivity constant 2048 to get the
acceleration in each axis in units of g: accel_x = 6032/2048 ≈
2.95g, accel_y = 8382/2048 ≈ 4.09g, and accel_z = 2020/2048 ≈
0.99 g. There are 2 bytes of accelerometer values per axis.
Therefore, accelerometer data in 3 axis will be 6 bytes.

Figure 3: Register mapping of the accelerometer (top) and
accelerometer configuration register (below)

Sending data from RFduino
The IMU is paired with an RFduino. The main job of the RFduino
is to read the raw values from the sensor, and encode the IMU
data and send it to the Android via Bluetooth. We obtained the
raw data from the IMU to our RFduino via I2C. The next step is
to encode the data into bytes and sent these bytes to our Android
application via Bluetooth low energy.

Prototyping the housing unit
To enclose our device, we printed our housing unit. The housing
unit has 4 button exposed on the top. The housing unit uses a
“double T” design to access the button. The motive behind the
double T design is used to lock the button in place so that it does
not fall out. The circular pad, which is connected to the double T
support material, can be pressed exteriorly. The flat-end part of
the double T support is pressed against the device’s button. This
allows users to press buttons from the exterior.

Figure 4: Prototype case for the device

Figure 5: Double T design for button (left) and exterior button
for the housing unit (right)

 - 3 -

Software
Data flow
The Android phone handles most of the processing. When the
motion button is pressed on the RFduino, the Android phone
processes the data until the button is pressed again. It decodes the
data from the RFduino and stores it into a Motion object. Our
algorithm is then applied to all the motion objects accumulated by
the user and outputs the consistency score, a rating value between
0 and 100.

Figure 6: Data flowchart, from the user’s motion to the
consistency score

Detecting similarities in motion data
Once the user has done a variety of motions, the user can view
his/her consistency score by swiping to the consistency tab. It
calculates the score by comparing the motion objects. This is the
most challenging part. How should you compare sets of data
motion? What approach is optimal? Without some measure of
warping the data, it is very hard because the data has a component
of time that we do not want to factor when making the
comparisons. Two motions that are similar but starts at different
times should output as a similar motion. The solution to our
problem was dynamic time warping. Using dynamic time
warping our output is the path cost from one motion to another
motion. The lower the path cost, the more similar the motions are.
This is the core of our consistency score rating.

Dynamic time warping
DTW is a time series alignment algorithm. It aligns two sequences
of vectors by warping the time axis iteratively until an optimal
match between the sequences is found [4]. To understand how this
algorithm works, you can visualize a 2D grid. Each cell in the grid
represents the minimum path costs to reach that cell. The cost is
related to the motion vectors that are being compared. Similar
values result in lower costs. This algorithm works by keeping
track of the costs of the best paths to each point in the grid. Once
the end point is reached, it calculates the minimum cost value by
accumulating all the cost values at each point in the path. For our
purpose, the value of the path cost is related to the consistency of
motions. High path costs in two motions infers that the motions
are not similar, whereas low path costs infers that the motions are
similar. At some point we must draw a line to determine what is
considered a “good” score and “bad” score. The quantitative
representation of this line is a threshold value.

Considering different motion speeds
The cost path increases as the magnitudes of the signal increases.
Our team considered two options of solving the issue; we must
either normalize the data or consider an algorithm to adjust the
threshold value. With some testing, we found the later to be more
effective.

Dealing with noise
When dealing with data, noise must be considered. Even when the
IMU is static, there are fluctuations in the data. This noise adds
some error in our motion consistency algorithm. We balance this
noise with an initial threshold for our path cost. This initial
threshold is minimal and is enough to cover the static noise we are
getting from the IMU.

Figure 7: Dynamic time warping algorithm grid

Figure 8: Visual representation of DTW alignment

RESULTS
Verifying Sensei
Testing the DTW algorithm
To test DTW we verified that closer related vectors resulted in
lower DTW path costs. We first generated vectors to compare.
We made a function to generate vectors that would be similar by a
given percentage. We made a variety of vectors that were similar
by different percentages. DTW was then applied to these vectors
and we viewed the results. Our output cost paths should reflect
based on the percentages of similarity of the vectors. For example
a percentage of 90% similarity should be giving a lower cost path
than one with 80% similarity. We verified that the smaller costs
paths were associated to the vectors with higher similarity, and
vice versa.

 - 4 -

Testing the consistency algorithm
To evaluate and verify our consistency algorithm, we tested the
common case and the edge cases. One of our edge cases was the
resting position. In this position two or more motions should
achieve a very high consistency score. Other edges cases include
very slow motions and very fast motions. Three participants
performed different motions of varying speed and time. The data
we collected was processed in our algorithm and we debugged
and analyzed every stage of the algorithm to make sure each was
functional. Our motion was processed into a motion array, which
was then dynamically time warped to calculate the costs paths.
For each case we tested, we compared this cost path to our
modified threshold values. We determined a relation between path
cost and consistency percentage based on that. Since there are
many different motions to consider, throughout testing, many
adjustments of the algorithm had to be made.

CHALLENGES
Frequency of sending data
After successfully reading the IMU data we verified to make sure
it matches with our encoding. Next, we graphed the values
coming from the sensor and realized a potential problem. Speed
was an issue. The frequency at which we are sending data
severely impacts our ability to determine whether a frame of data
is consistent to another frame. At first without any delays we were
getting a frequency of about 25 Hz. In other words we were
sending raw data 25 times per second. This was not sufficient
because if we are moving the device very fast, then the capturing
of motion is not as smooth. We later optimized our RFduino
code’s efficiency. With this change, we were able to send raw
data at a rate of 80 Hz. This helped smooth our data graphs and
improved our precision.

Housing challenges
Since none of us were mechanical experts, one of our biggest
challenges was to have buttons that were accessible from the 3D
housing. We looked at several designs and decided that a “double
T” design would be effective for our housing unit. Although
effective, installing the double T pillar design to support our
device, outer housing, and button cap was difficult. Many manual
adjustments were made to ensure that everything was lined up
correctly. Lining up the button-holes from the housing unit to the
buttons on the device was also challenging. Not only was it hard
to get precise measurements, but also the 3D printer’s error was a
big problem. Since we most measurements were taken in units of
millimeters, the error on the 3D printing could not be ignored.
Many manual adjustments to our 3D model had to be made in the
housing process.

Consistency algorithm challenges
One of our biggest challenges in determining the consistency
algorithm was to figure out the proper way of comparing signals
that vary in time. Although they vary in time, our algorithm must
be able to adjust to time. If you compare the data at the same time
segments, two motions that are identical, but shifted in time will
conclude that the motions are not similar. Applying DTW to our
motion data solved this problem.

IMPROVEMENTS
User experience
For a better user experience, replacing the push buttons with a
touch sensor would be necessary. Another improvement is to get

rid of the start and stop signal. We hope in the future our device
just requires one tap to start a sport session. Throughout the
session the user can make multiple motions and the device will
detect what was considered a motion and compare them. This will
reduce a lot of the setup work of the device. We believe this can
be possible with the use of the gyroscope and accelerator data.
When the gyroscope and accelerator data exceeds a threshold that
can be the signal that a motion is starting. When those values get
below a threshold that is when a motion is stopped. We hope we
could implement this feature in the future. Also adding a small
display screen can make scorekeeper completely independent of
our Android phone.

Retrieving accurate and smooth data
To perfect our design, our system would require continuous data.
Since that is impossible, the best we could do is to maximize the
sensor’s data throughput and smooth our data. Our current
throughput is 80 Hz. One method of improving our results is to
smooth the data. Although a rate of 80 Hz is sufficient for our
product, we can improve this by smoothing out the signal. A
perfect sensor would have no spikes in the data. The difference in
two adjacent acceleration readings should be similar in
magnitude. Since motion is continuous we would want our data to
be more continuous. If we can make our IMU data have less
spikes, it would improve our results. We can improve our design
by applying a smoothing function to reduce spikes in our data.

CONCLUSION
Our team wanted a device that can replace the need for a sports
coach. Sensei, as a wearable device, can be a portable replacement
for a coach. It helps quantify and evaluate your sports session.
Sensei’s main motivation is to deliver the user a metric in which
they can evaluate their stroke. The device will give a visual
representation of their motion. We believe that a sports player
should strive for consistency. Sensei will give the user a score on
how consistent their motion is. The IMU measures the motion at a
rate of 80 Hz and the Android phone processes the data and
performs algorithms to determine the score. The consistency score
is determined by applying a dynamic time warping algorithm to
the sensor data.

REFERENCES
1. Wikipedia. (2015) Dynamic Time Warping. Retrieved June 1,

2015. http://en.wikipedia.org/wiki/Dynamic_time_warping

2. InvenSense. (2015) MPU-6050. Retrieved June 1, 2015.
http://www.invensense.com/products/motion-tracking/6-
axis/mpu-6050/

3. RFduino. (2014) RFduino. Retrieved June 1, 2015.
http://www.rfduino.com/product/rfd22102-rfduino-
dip/index.html

4. GenTχWarper. DTW algorithm. Retrieved June 1, 2015.
http://www.psb.ugent.be/cbd/papers/gentxwarper/DTWalgorith
m.htm

5. Hiroaki Sakoe and Siebi Chiba, “Dynamic programming
algorithm optimization for spoken word recognition,”
Acoustics, Speech and Signal Processing, IEEE Tnransactions
on, vol. 26, no. 1, pp. 43-49, Feb 1978.

